Space E cient Breadth-First and Level Traversals of Consistent Global States of Parallel Programs

نویسندگان

  • Himanshu Chauhan
  • Vijay K. Garg
چکیده

Enumerating consistent global states of a computation is a fundamental problem in parallel computing with applications to debugging, testing and runtime verification of parallel programs. Breadth-first search (BFS) enumeration is especially useful for these applications as it finds an erroneous consistent global state with the least number of events possible. The total number of executed events in a global state is called its rank. BFS also allows enumeration of all global states of a given rank or within a range of ranks. If a computation on n processes has m events per process on average, then the traditional BFS (Cooper-Marzullo and its variants) requires O(mn 1 n ) space in the worst case, whereas our algorithm performs the BFS requires O(m2n2) space. Thus, we reduce the space complexity for BFS enumeration of consistent global states exponentially, and give the first polynomial space algorithm for this task. In our experimental evaluation of seven benchmarks, traditional BFS fails in many cases by exhausting the 2 GB heap space allowed to the JVM. In contrast, our implementation uses less than 60 MB memory and is also faster in many cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Space Efficient Breadth-First and Level Traversals of Consistent Global States of Parallel Programs

Enumerating consistent global states of a computation is a fundamental problem in parallel computing with applications to debugging, testing and runtime verification of parallel programs. Breadth-first search (BFS) enumeration is especially useful for these applications as it finds an erroneous consistent global state with the least number of events possible. The total number of executed events...

متن کامل

Fast Detection of Stable and Count Predicates in Parallel Computations

Enumerating all consistent states of a parallel computation that satisfy a given predicate is an important problem in debugging and verification of parallel programs. We give a fast algorithm to enumerate all consistent states of a parallel computation that satisfy a stable predicate. In addition, we define a new category of global predicates called count predicates and give an algorithm to enu...

متن کامل

QuickLex: A Fast Algorithm for Consistent Global States Enumeration of Distributed Computations

Verifying the correctness of executions of concurrent and distributed programs is difficult because they show nondeterministic behavior due to different process scheduling order. Predicate detection can alleviate this problem by predicting whether the user-specified condition (predicate) could have become true in any global state of the given concurrent or distributed computation. The method is...

متن کامل

A Self-Consistent Technique for the Construction and Evaluation of the Three-Parameter Corresponding States Principles

A self-consistent approach for the evaluation of the existing three-parameter corresponding states principles of non-polar fluids and the calculation of the corresponding states parameters is presented. This self consistent approach is based upon the assumption that the contribution of the third parameter to the thermophysical properties is much smaller than the contributions of the first two p...

متن کامل

Stricti cation of Lazy Functions

This papers describes a transformation from lazy functions into e cient non-lazy ones. The functions we study perform multiple traversals over a data structure. Our transformation performs a global analysis of the calling structure of a set of mutually recursive lazy-functions in order to transform them into sets of functions which must be called in sequence. Many of the resulting functions can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017